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I. INTRODUCTION

Consider the example shown in Fig. 1 where a robot
is tasked with manipulating, using prehensile and non-
prehensile planar actions, an object (the orange fruit) to a
target location. The robot end-effector has to navigate its way
through the clutter whilst not dropping any off the objects
of the edges of the surface. Fundamental to the successful
execution of such a manipulation task is the ability to reason
over the effect of an action on achieving the task goal.
Further, it is essential for the actions to be generated from
a closed-loop control scheme in real-time for the robot to
adapt its motion to the evolution of the interaction sequence
with the real world. These two requirements are challenged
by the complex interaction dynamics, edge constraints, and
variation in object shapes and numbers.

Receding Horizon Planning (RHP) presents itself as an
attractive solution that can be run in near real-time when a
suitable heuristic is available. RHP works by running multi-
ple stochastic physics-based roll-outs up to a certain horizon
in the physics simulator as illustrated by the simulation
rendered images in Fig. 1. Each roll-out is evaluated based
on the collected rewards during the roll-out and the expected
rewards beyond the horizon state: R0:H = r1 + γr2 + . . .+
γH−1rH+γHv(sH). RHP returns the first action of the best
roll-out. In this process, the heuristic is required for guiding
the roll-outs towards parts of the state space with higher
expected rewards, and for estimating the expected rewards
beyond the horizon state.

The goal of this work is to acquire, without prior knowl-
edge that might bias the solution, efficient (in terms of
number of actions) manipulation skills that can seamlessly
generalize over an arbitrary number of novel objects on a
cluttered planar surface in the real world. To achieve this
goal, we proposed in [1], [2] interleaving real-world exe-
cution with physics-based RHP that is guided by a learned
heuristic. This approach is based on dynamically mapping
the state of the real world to the simulator, where RHP is
engaged. The returned action is then executed by the real
robot.

To this end, most learning based approaches for ma-
nipulation in clutter relies on operating in a discrete ac-
tion space [3], [2] or well defined action primitives [4].
The achievements of these implementation in challenging
high dimensional state spaces was made possible by the
relative stability of off-policy RL algorithms (ex: deep Q-
learning) in discrete actions spaces. However, this often
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Fig. 1: Real-world execution of moving an object (or-
ange fruit) to a target location using image-based Receding
Horizon Planning. The abstract images show the predicted
horizon states of different stochastic look-ahead roll-outs.

comes at the cost of learning a sub-optimal behavior to
what is actually achievable by the robot if it were allowed
to use the full continuous action space. In our previous
work (see https://youtu.be/EmkUQfyvwkY), we observe the
robot executing multiple discrete action steps to re-position
itself to a specific location while not traversing a significant
Euclidean distance in the Cartesian space. Our intuition is
that a policy that can operate in a continuous action space
would reduce the number of actions required for solving such
a manipulation task. In this work present a novel heuristic
and its corresponding learning algorithm for operating in
continuous action space.

II. STATE OF THE ART

There have been multiple recent developments in off-
policy value-gradient algorithms for continuous action space
(ex: DDPG, CEM-RL, SVG, NAF). Nevertheless, they re-
main impractical to tune particularly in high dimensional
tasks with sparse rewards such as manipulation in clutter.
The current state-of-the-art for scalable RL algorithms in
continuous state and action spaces is dominated by the TRPO
and PPO type of policy gradient methods that are on-policy
by nature. They require a moderate level of parameter tuning,
and they rely on using large batch sizes and limit on policy
updates to reduce gradient variance and by consequence to
keep them from diverging.

Even though an on-policy algorithm might be more stable
at the cost of high sample efficiency, we still found it hard
to tune for the training process to converge in our target
application. This motivated us to develop a more stable
variant of an actor-critic style RL algorithm with PPO.



III. HEURISTIC LEARNING

The performance of RHP is tied to the quality of its
heuristic. The heuristic, modeled by a CNN+DNN and
parametrized by θ, is trained to estimate the optimal policy
with a stochastic policy, as well as the value function of the
learned stochastic policy. In applications where the visual
input is significant, the motivation for the policy and the
value function to share their parameters is to stabilize the
learning as they both share the same low level features and
learning them together acts as a regularizing element. RHP
would use the stochastic policy to sample physics-based roll-
outs, and the value function to estimate the expected rewards
beyond the horizon states.

Training a randomly seeded Reinforcement Learning (RL)
algorithm in cluttered and edge constrained manipulation
environment is unlikely to converge as transition samples
leading to the goal will not be observed enough many times.
Therefore, similarly to our previous work, we divided the
training procedure into three consecutive steps:
Data Collection: we collect a large number of demonstration
of solving task instances with random parameterization using
a kino-dynamic RRT planner.
Imitation Learning: we jump-start the CNN+DNN with
the collected sub-optimal demonstrations. The value head of
CNN+DNN is trained to approximate the value function of
the policy produced by the planner. The policy head of the
CNN+DNN is trained to approximate the action distribution
from the demonstrations while penalizing a high entropy
distribution.
Reinforcement Learning: we implement an actor-critic style
algorithm (A2C) with clipped policy updates as defined by
the PPO formulation [5]. In a nutshell, the algorithm loops
over 1) running the agent in a simulation environment to
collect M transition samples. 2) Once the data is collected,
the parameters θ of the CNN+DNN are stored as θold. 3)
Then, the value function and the policy are updated together
by minimizing the surrogate loss function w. r. t. θ over the
M samples in a batch B = {〈si, ai, ri, s′i〉i}:

LsurrogateB (θ) =
1

M

M∑
i=1

− min(rratio(θ)Aadv, clip(rratio(θ), 1− ε, 1 + ε)Aadv)

+ β (r(s, a) + γvθold(s
′)− vθ(s))2

+ δ Hentropy(πθ(.|s)) (1)

where rratio(θ) = πθ(a|s)
πθold (a|s)

is the ratio of the probability
under the new and old policies, respectively.

Aadv = r(s, a) + γvθold(s
′)− vθold(s)

is the estimated advantage. Hentropy is added to encourage
exploration.

However, it remains that, in this loss function, the baseline
vθold used to compute the advantage Aadv is an approxima-
tion of the value of the policy prior to πθold . This means that
the baseline for updating the policy is always one step behind
the policy used to collect the data. This often goes unnoticed
as the policy updates are bounded by the clip function. In
our target application however, even a very small change in

TABLE I: Results in discrete and continuous action space

Discrete Continuous
Success rate 95% 97%

Action efficiency 0.22 ± 0.02 0.48 ± 0.12
the policy can entail a drastic change in the value function,
causing what is know as catastrophic forgetting. To overcome
this problem, we propose updating the baseline, prior to
performing an optimization step over Eq. 1, to better estimate
the value of the policy used to collect the data while also
refraining from causing a change to the action distribution
of this policy. This is achieved by first doing a updated of
the value function with a preference for keeping the policy
unchanged:

LbaselineB (θ) =
1

M

M∑
i=1

(r(s, a) + γvθold(s
′)− vθ(s))2

+ ζ DKL( πθold(.|s) || πθ(.|s) ) (2)

where ζ is a tunable hyper parameter. The first term on
the right will update the value function of the policy used
to collect the M transition samples. Since the policy head
and the value function head share the same network and
updating one perturbs the other, the second term on the right
penalizes the KL-divergence between the action distribution
of the policy used to collect the data and any resulting change
in the action distribution that might be induced by the value
function update.

IV. EXPERIMENTS

To assess whether performing the manipulation task in a
continuous action space offers any benefits over a discrete
action space, we compare the performance of the two in
simulation using heuristic guided RHP. We look at two
evaluation metrics. 1) The Success rate per 100 random task
instances (with up to 5 objects), where success is declared
when the desired object is manipulated to the target region
under 35 action steps and without any of the objects dropping
of the surface edges. 2) The Action Efficiency looks at how
many actions were executed before successfully reaching
the goal. It is measured in view of the scene complexity
which is represented by the clutter density. It is calculated as
number of objects in the scene

number of actions until completion . The results, presented in
Table I, show that the success rate remains relatively the same
between the two. Further, the results confirms our hypothesis
that a continuous action space for manipulation in clutter
offers a substantial benefit to the action efficiency, which
went up from 0.22 to 0.48.
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