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Abstract— Deep Reinforcement Learning techniques demon-
strate advances in the domain of robotics. One of the limiting
factors is the large number of interaction samples usually
required for training in simulated and real-world environ-
ments. In this work, we demonstrate that tactile information
substantially increases sample efficiency for training (by 97%
on average), and simultaneously increases the performance in
dexterous in-hand manipulation of objects tasks (by 21% on
average). To examine the role of tactile-sensor parameters in
these improvements, we conducted experiments with varied
sensor-measurement accuracy (Boolean vs. float values), and
varied spatial resolution of the tactile sensors (92 sensors vs.
16 sensors on the hand). We conclude that ground-truth touch-
sensor readings as well as dense tactile resolution do not further
improve performance and sample efficiency in the tasks. We
make available these touch-sensors extensions as a part of
OpenAI-Gym robotics Shadow-Dexterous-Hand environments.

I. INTRODUCTION
Deep Reinforcement Learning techniques demonstrate ad-

vances in the domain of robotics. For example, dexterous
in-hand manipulation of objects with an anthropomorphic
robotic hand [1, 2]. An agent with a model-free policy was
able to learn complex in-hand manipulation tasks using just
proprioceptive feedback and visual information about the
manipulated object. Continuous haptic feedback can improve
grasping acquisition in terms of robustness under uncertainty
[3]. We present empirical results in simulation that show
that including tactile information in the state improves the
sample efficiency and performance for dynamic in-hand
manipulation of objects.

Recent works describe approaches to bring the tactile sens-
ing to anthropomorphic hands like the Shadow Dexterous
Hand, by providing integrated tactile fingertips [4] as shown
in Fig. 1 and constructing a flexible tactile skin [5]. The
tactile skin comprises stretchable and flexible, fabric-based
tactile sensors capable of capturing typical human interaction
forces within the palm and proximal and distal phalanges of
the hand. This enables the hand to exploit tactile information,
e.g. for contact or slip detection [6]. The distribution of
tactile sensors in these works resembles our segmentation
of the simulated Shadow Dexterous Hand into 92 tactile-
sensitive areas.

II. METHODS
OpenAI Gym [7] contains several simulated robotics envi-

ronments with the Shadow Dexterous Hand. These environ-
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Fig. 1. Shadow Dexterous Hand equipped with fabrics-based tactile sensors
in the palm and finger phalanges (indicated green) and fingertip sensors
realized by Molded-Interconnect-Devices (indicated yellow) [4, 5]

TABLE I
THE 92 AND 16 TOUCH-SENSOR ENVIRONMENTS.

lower phalanx of the fingers (4x) 7 sensors x 4 1 sensor x 4
middle phalanxes of the fingers (4x) 5 sensors x 4 1 sensor x 4

tip phalanxes of the fingers (4x) 5 sensors x 4 1 sensor x 4
thumb phalanxes (3x) 5 sensors x 3 1 sensor x 3

palm (1x) 9 sensors x 1 1 sensor x 1
All touch sensors 92 sensors 16 sensors

ments use the MuJoCo physics engine. The anthropomorphic
Shadow Dexterous Hand model, comprising 24 degrees of
freedom (20 actuated and 4 coupled), has to manipulate an
object (block, egg, or pen) so that it matches a given goal
orientation, position, or both position and orientation. For
the sake of brevity, further details about training procedure,
reward function, goal-aware observation space, and neural
network parameters are available in [2], since our main
contribution focuses on the extension of the existing Shadow
Dexterous Hand model by tactile sensors.

We extended the Shadow Dexterous Hand model with
touch sensors available as new environments (Table II) in
the OpenAI Gym package [7]. We covered all five fingers

Fig. 2. 92 touch sensors covering the Shadow Dexterous Hand model.
This is a technical visualization to represent the essence of our model.
Red sites represent activated touch sensors, where a block is pressing
against the touch sensitive area. Green sites represent inactive touch sensors.
A video demonstration of the extended environments can be found at
https://rebrand.ly/TouchSensors.



TABLE II
OPENAI GYM ROBOTICS ENVIRONMENTS WITH TOUCH SENSORS:

-V0 (BOOLEAN), -V1 (FLOAT-VALUE)

HandManipulateBlockRotateZTouchSensors
HandManipulateBlockRotateParallelTouchSensors
HandManipulateBlockRotateXYZTouchSensors

HandManipulateBlockTouchSensors
HandManipulateEggRotateTouchSensors

HandManipulateEggTouchSensors
HandManipulatePenRotateTouchSensors

HandManipulatePenTouchSensors

and the palm of the Shadow Dexterous Hand model with
92 touch sensors (Fig. 2; Table I). For the original OpenAI
Gym simulated environments for robotics (Table II) without
touch information, the state vector is 68-dimensional [2]. In
the environments with 92 touch sensors the state vector is
160-dimensional (68+92). As an additional experiment, we
grouped 92 sensors into 16 sub-groups to reduce the tactile
sensory resolution (”16 Sensors-v0”) (Fig. 2; Table I). In
the environments with 16 touch sensors sub-groups the state
vector is 84-dimensional (68+16). For a given state of the
environment, a trained policy outputs an action vector of
20 float numbers used for position-control (actuation center
+ action * actuation range) of the 20 actuated degrees of
freedom.

III. EXPERIMENTAL RESULTS
To provide insights about how different aspects of tactile

information (accuracy, tactile resolution) influence learning
and performance we conducted three experiments. In the first
experiment we added float-value readings from 92 sensors
to the state (red curves in Fig. 3). This experiment can
be reproduced in the OpenAI-gym-robotics environments
ending at ”...TouchSensors-v1”. In the second experiment
we added Boolean-value reading from the same 92 sensors
to the state (black curves in Fig. 3). The experiment can
be reproduced in the OpenAI-gym-robotics environments
ending at ”...TouchSensors-v0”. In the third experiment we
grouped 92 sensors into 16 sub-groups (Table I) to reduce the
tactile sensory resolution and added Boolean-value readings
from the 16 sub-groups to the state (green curves in Fig. 3).
In each experiment, we observe on average 1.21 times better
performance (Fig. 3) when tactile information is available.
In each experiment, we observe on average 1.97 times faster
convergence (Fig. 3) when tactile information is available.

IV. CONCLUSIONS
In this work, we introduce the touch-sensors extensions

to OpenAI-Gym [7] robotics Shadow-Dexterous-Hand envi-
ronments [2] modeled after our touch sensor developments
[4, 5]. We find that adding tactile information substantially
increases sample efficiency for training (by 97% on average)
and performance (by 21% on average) in the environments,
when training with deep reinforcement learning techniques.
To examine the role of tactile-sensor parameters in these im-
provements, we conducted experiments (Fig. 3) with varied
sensor-measurement accuracy (Boolean vs. float values), and
varied spatial resolution of the tactile sensors (92 sensors

Fig. 3. Curves - median test success rate. Shaded areas - interquartile
range [five random seeds]. Blue curves - learning without tactile infor-
mation (NoSensors), red curves - learning with float-value tactile readings
(Sensors-v1) from 92 sensors, black curves - learning with Boolean-value
tactile readings (Sensors-v0) from 92 sensors, green curves - learning with
Boolean-value tactile readings (Sensors-v0) from 16 sensor sub-groups.

vs. 16 sensors on the hand). We conclude that accurate
sensory readings as well as dense tactile resolution do not
substantially improve performance and sample efficiency
when training with deep reinforcement learning techniques,
in comparison to Boolean sensor readings and sparse sensor
localization (one sensor per phalanx). The performance and
sample efficiency for training are similar in these case. These
experiments provide beneficial knowledge for those looking
to build robots with tactile sensors for manipulation.
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