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Abstract—This paper describes an approach for visual estima-

tion of the minimum magnitude grasping wrench necessary

to extract massive objects from an unstructured pile, subject

to limitations of a given end effector. This is enabled through

representation of the net wrench restraining each component

of the pile, comprised of the weight of an item and contact

forces applied by adjacent objects, as a ‘wrench space stiction

manifold’. The model acts upon depth information of object

candidates, furnished by exteroception and any desired seg-

mentation algorithm, in this implementation using a RealSense

RGBD camera. Properties such as volume and mass are

estimated from the point cloud, and a geometric adjacency

graph used to infer incident wrenches upon each object. An

extension of classical force closure analysis is then applied to

these parameters, producing a notion of the ‘stiction’ force

restraining each object as a function of direction. Candidate

extraction object/force-vector pairs may then be selected from

the pile that are within the system’s capability.

1. Introduction

Grasp selection in unstructured environments has proven

a challenging task, and is complicated further when lacking

a priori knowledge of manipuland shape and mass proper-

ties. Prior art has sought to address the problems of object

agnostic grasp synthesis [1] [2] [3], grasping of known and

unknown objects amongst clutter [4] [5], as well as lifting

of massive objects with wrench constrained end effectors or

actuators [6].

This work seeks to address the intersection of these, in

particular the disassembly of unstructured piles of massive

objects (e.g. Figure 1 right), where lifting one object may in-

duce lifting or pulling other objects, which in turn increases

the required grasp wrench, and may exceed the capabilities

of the manipulation system, as occurred in Figure 1 left.

While indiscriminate, randomized grasp and lift motions

can be coupled with proprioceptive wrench guarding to

eventually find a viable removal candidate (if one exists),
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Figure 1. Left: Army Research Lab’s ‘RoMan’ mobile manipulation plat-

form with broken proximal joint on Robotiq 3-finger Gripper. Right:

Example debris pile of massive objects, where lifting two or more items

exceeds manipulator payload limits.

the aim of this task is to decompose the object pile time

efficiently. This necessitates leveraging exteroception to in-

fer the composition and structure of the pile, allowing the

system to more rapidly identify grasps that comply with the

force and torque limits of the manipulation system.

The approach is now being applied to the task of clearing

debris piles from urban environments, with object masses in

the range of 1-20kg, and grasp synthesis achieved through

fitting geometric prototypes [7].

2. Wrench Space Stiction Manifold

Each candidate manipuland within a static, unstructured

pile is subject to its own weight, and the contact forces

imparted upon it by adjacent objects. In order for an item

to be extracted from the pile, the static equilibrium of the

structure around the item must be broken by exceeding

the net of those forces via a grasp wrench applied by

a given manipulator. This is termed the ‘stiction’ wrench

that restrains the item, the magnitude of which varies as a

function of direction due to the pose of normal and frictional

contact forces.

A segmentation algorithm is used to produce singu-

lated object candidates and a best guess of inter-object

contacts through geometric adjacency (this implementation

employing Locally Convex Connected Patches [8]). For each

singulated object, an estimate of the volume is developed by

suitable means and used to infer mass from a prediction of

possible densities within the task environment. The geomet-

ric adjacency graph from exteroception is then employed to

predict the inter-object wrenches present within the struc-

ture. For this early work, contact normals are assumed to

be co-linear with the vector between the centers of mass



Figure 2. Left: RGB image of example debris pile containing Aluminum truss segment, safety barrier, 4x4 wood, and pallet. Center: Point cloud captured

with RealSense D435. Right: Singulated object candidates with geometric adjacency from Locally Convex Connected Patches algorithm. [8]

(COM) of object pairs, though this could be improved by

leveraging geometric context from the pointcloud.

The graph describing object contacts is directed, as only

objects below the line of gravity with respect to their pair

must overcome the contact wrench to break stiction (e.g.

object 2 in Figure 3a), whereas the reverse is not as the

contact is simply broken (e.g. objects 1 & 3). Each wrench

imparted by an incident object upon a target object is

described in the COM frame of the target (Figure 3b). The

point of contact between the objects is described by the

vector r̄, and through this point the normal and frictional

contact forces act, represented by n̄ and f̄ respectively.

The frictional force is described with the Coulomb fric-

tion model and may lie anywhere in the orthogonal space

of the normal vector, f̄ 2 R3s.t.f̄ · n̄ = 0, |f̄ |  µ|n̄|. As

the forces supporting an object may be statically indetermi-

nate, this initial Newtonian analysis assumes the maximum

friction force to provide an upper bound on the expected

extraction effort. The sum of estimated object weight and

all incident contact wrenches is then calculated across direc-

tions in wrench space to produce a ‘wrench space stiction

manifold’, a closed set of the COM wrenches that will not

overcome static friction.

The minimum distance of this manifold from the origin

represents the smallest wrench that could be applied to

dislodge the given object from the pile. After evaluating

this manifold for each object, candidate grasp points may

be selected so as to have highest expectation of being within

the systems’ capabilities, allowing expeditious disassembly

of the pile.
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