
Whole-Body Kinematic Model Predictive Control for Continuous Mobile
Manipulation Tasks

Johannes Pankert, Marco Hutter

Abstract— We present a receding horizon controller to per-
form continuous tasks with a mobile manipulator. The end
effector of our robot follows a desired trajectory while respect-
ing joint space limits and avoiding self-collisions. We use an
airbrush to spray a pattern onto a wall to demonstrate the
capabilities of the controller.

I. INTRODUCTION

Many current works on mobile manipulation separate
the task into a locomotion and a manipulation problem.
We propose a whole-body control approach that allows
for coordinated base-arm motion to solve the task. The
controller enables our robot to operate in a workspace that
is larger than the maximum reach of its manipulator. This
contribution is an extension to our previous work, where
we initially introduced our whole-body model predictive
controller [1]. We add joint space constraints and propose a
method for self-collision avoidance. The systems capabilities
are demonstrated with an airbrush paint task on the mobile
manipulator MabiMobile.

II. METHOD

A model predictive control (MPC) module generates con-
trol inputs for the robot to follow an end-effector trajectory
while respecting several constraints. In the following sec-
tions, we describe the controller’s system model and the cost
function used.

A. System Model

We approximate the full system dynamics with a kinematic
model in the MPC. Joint positions describe the state of
the arm xarm = [q0, . . . q5]

T . In contrast to our previous
work, the full base pose is used in the system model. A
quaternion encodes the base’s orientation and a <3 vector
its position. Together, they form the base state xbase =
[qbase, r]

T . For the state of the whole system, we write:
x = [xbase,xarm]T . Using the full base pose instead of
a reduced state [x, y, ϕyaw] for a ground robot has two
advantages: 1. The robot can negotiate uneven terrain and
track end effector references given in world frame accurately.
2. The robot used for evaluation of the method has a differen-
tial drive base with supporting passive castor wheels. These
wheels are attached to the base with a spring suspension
system. Depending on the arm configuration, the system’s
center of mass varies significantly and hence the compression
status of the springs changes. This leads to a varying pitch
angle of the base, even on flat terrain, which cannot be
described with the reduced model.
The arm is controlled with joint velocity references uarm =

[ω0, . . . ω5]. The base’s wheel speeds are calculated from
the desired base twist, the forward velocity and the turning
rate ubase = [v, ωb]. The desired base twist can be applied
to the base state in two ways: For most robotic system,
applying a base frame twist to the robot state is a good
choice. This is equivalent to approximating the ground with
a plane perpendicular to the base normal.
Since our robot is mostly going to operate on flat grounds and
has got an uncontrolled rotational pitch degree of freedom,
we apply the control twist in world frame instead. Rotating
around the world z-axis models reality better than rotating
around the base normal vector.
These considerations lead to the following system model:

ẋ =

 qbase � 0.5kω
qbase � iv � q−1

base

uarm

 (1)

� denotes the Hamilton quaternion product and i, j, k are
the quaternion imaginary units.

B. Costfunction

The costfunction consists of multiple terms to balance the
different objectives of the controller:

1) Task space tracking: Deviations of the robot’s end
effector pose xee to a desired pose x̂ee are penalized. The
desired pose may be time-dependent and varies over the
controller’s time horizon. For the translational error, we use
the difference between the two position vectors. To compute
the rotational error, we use an orientation error formulation
on the orientation quaternions of the current and the desired
pose [2].
The robot’s end effector pose is a function of the cur-
rent state. We use Robcogen [3] to compute the joint-
angle-dependent transformation from the robot’s base to
the end effector and multiply with the world to base
transform from xbase. The sum of squares of these er-
ror functions form the end effector tracking term of our
costfunction: Cee(t,x) = ‖xee,pos(t,x)− x̂ee,pos(t)‖22 +

‖eO(xee,orientation(t,x), x̂ee,orientation(t)‖22.
2) Joint Space Constraints: In our previous work we used

a quadratic penality cost to punish deviations from a nominal
arm configuration. This prevented self-collision but hurt the
accuracy of the end effector tracking objective. Here, we use
Relaxed Barrier Functions (RBF) instead to enforce the joint
limits of the robot [4].

B̂(z) =

{
−ln(z) z > δ

β(z; δ) z <= δ
(2)



β is the quadratic function for which B ∈ C2. The RBFs
implement soft inequality constraints that penalize violations
of the joint position and velocity limits. With δ = 0.1
we get a good balance between constraint fulfillment and
convergence of the SLQ solver.

3) Self-Collision avoidance: Collisions of arm and base
are avoided by putting a cost on the end effector position
relative to the robot’s base frame. We define a differentiable
cost function on the end effector planar position with RBFs.
The cost pushes the end effector away from the base foot-
print. Another cost term prevents the end effector to move
as far away as possible by penalizing its distance to the
base’s center. Figure 1a shows the combined end effector
collision cost Ccollision with respect to the base origin plotted
in logarithmic scale.

C. MPC Formulation

A weighted sum over the said cost terms is the interme-
diate MPC cost. An additional quadratic cost term penalizes
control inputs.

J(x, x̂,u) =

∫ t0+T

τ=t0

L(x(τ), x̂(τ),u(τ))dτ (3)

L(x, x̂,u) =λ0Cee + λ1Cjoint_pos + λ2Cjoint_vel+ (4)

λ3Cbase_collision + uTRu

The experiments were conducted with λ0 = 10, λ1,2,3 =
10−3 and R = diag[I2, I6]. We implemented the MPC
control problem with the OCS2 toolbox and used its SLQ
solver [5] to compute optimal solutions with a rate of 100Hz
over a time horizon of T = 2 s. The necessary derivatives
and Hessians were computed with CppAD Code Gen 1.
In contrast to our previous work, we do not follow the
optimal trajectories with a separate tracking controller but we
use the affine policies generated by the MPC. We evaluate
the affine policies with the latest state estimates at a rate of
250Hz and directly send the computed control inputs to the
motor controllers.

III. HARDWARE EXPERIMENTS

A. MabiMobile

In our previous work we implemented the whole-body
model predictive controller on the Waco mobile manipulator
[1]. In this work, we use the MabiMobile platform instead.
MabiMobile consists of a differential drive base with sup-
porting castor wheels and a Mabi Speedy 12 manipulator.
The robot uses an Intel Realsense T265 for localization.
Various tools can be attached to the end effector for different
applications.

B. Experiment

We mounted a paint brush to the end effector and sprayed
a pattern onto a whiteboard to showcase a continuous
manipulation task. Figure 1b shows the drawn line. To
solely evaluate the controller performance and disregard the
problem of global localization, we command the spraying

1https://github.com/joaoleal/CppADCodeGen

(a) Cost on the end effector
planar position in base frame.
The optimal end effector po-
sition is outside the base foot-
print and within the maximum
reach of the arm.

(b) MabiMobile spraying a
black line onto a whiteboard.

µpos[m] σpos[m] µrot[◦] σrot[◦]
0.0156 0.0035 2.3981 0.5039
0.0184 0.0111 2.3668 0.5848
0.0150 0.0036 2.4146 0.5038
0.0155 0.0031 2.4924 0.5349
0.0208 0.0042 3.1252 0.7177
0.0170 0.0039 2.7039 0.5628

TABLE I: Linear and angular deviations of the robot’s end
effector pose from a reference trajectory.

path relative to the initial end effector pose. This explains
the vertical drift of the sprayed path.
We measured the accuracy of the position and orientation
tracking on 6 reference trajectories of 1.5m length. Table I
shows the mean positional and rotational deviations and their
standard deviations of 200 recorded end effector poses from
the reference trajectory.

IV. CONCLUSIONS

We presented a whole-body model predictive controller
for continuous tasks. The MPC plans with the knowledge of
joint limits and avoids self-collisions. Our proposed collision
avoidance procedure can be extended to other task space
obstacles.
We plan to use the controller to automize tasks in building
construction such as plastering, grinding, or chiseling.

REFERENCES

[1] A. Gawel, H. Blum, J. Pankert, K. Krämer, L. Bartolomei, and S. Ercan,
“A Fully-Integrated Sensing and Control System for High-Accuracy
Mobile Robotic Building Construction,” (accepted to) 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2019.

[2] B. Siciliano, Ed., Robotics: modelling, planning and control, ser. Ad-
vanced textbooks in control and signal processing. London: Springer,
2009, oCLC: ocn144222188.

[3] M. Frigerio, J. Buchli, D. G. Caldwell, and C. Semini,
“{R}ob{C}o{G}en: a code generator for efficient kinematics and
dynamics of articulated robots, based on {D}omain {S}pecific
{L}anguages,” vol. 7, no. Special Issue on Domain-Specific Languages
and Models for Robotic Systems, pp. 36–54, 2016.

[4] C. Feller and C. Ebenbauer, “Relaxed Logarithmic Barrier Function
Based Model Predictive Control of Linear Systems,” IEEE Transactions
on Automatic Control, 2017.

[5] F. Farshidian, M. Neunert, A. W. Winkler, G. Rey, and J. Buchli,
“An efficient optimal planning and control framework for quadrupedal
locomotion,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA), 2017, pp. 93–100.

https://github.com/joaoleal/CppADCodeGen

	Introduction
	Method
	System Model
	Costfunction
	Task space tracking
	Joint Space Constraints
	Self-Collision avoidance

	MPC Formulation

	Hardware Experiments
	MabiMobile
	Experiment

	Conclusions
	References

